
 

Geekbench ML 0.5
Inference Workloads



Introduction 3
Platform Support 4
Machine Learning Framework Support 4
Compilers 4
Runtime 5
Scores 5
Accuracy 5
Computer Vision Workloads 6
Image Classification 7

Image Segmentation 8

Pose Estimation 9

Object Detection 10

Face Detection 11

Natural Language Processing Workloads 12
Text Classification 13

Machine Translation 14

May 2021 Geekbench ML 0.5 2



Introduction
This document outlines the workloads included in the Geekbench ML Inference Benchmark 
suite.

Inference Benchmark scores are used to evaluate and optimize CPU, GPU, NPU, and DSP 
performance using workloads that include Computer Vision and Natural Language Processing 
tasks.

May 2021 Geekbench ML 0.5 3



Platform Support

Machine Learning Framework Support

Compilers

Platform Minimum Version Comment

Android Android 9

iOS iOS 14

Linux Ubuntu 18.04 LTS Coming in v0.6.0

macOS macOS 10.15 Coming in v0.6.0

Windows Windows 10 Coming in v0.6.0

Platform API Comment

Android TensorFlow Lite

iOS TensorFlow LIte Core ML Coming in v0.6.0

Linux TensorFlow Lite Coming in v0.6.0

macOS TensorFlow Lite Coming in v0.6.0

Windows TensorFlow Lite Coming in v0.6.0

Platform Compiler Comment

Android Clang 11.0 Provided by NDK r22b

iOS Xcode 12.5

Linux Clang 9.0 Coming in v0.6.0

macOS Xcode 12.5 Coming in v0.6.0

Windows Clang 9.0 Coming in v0.6.0

May 2021 Geekbench ML 0.5 4



Runtime 
Geekbench ML runs Inference workloads in the order listed here as the Inference Benchmark. 
Each workload is run for 5 iterations by default.

Scores
Geekbench ML workload scores are calibrated using results from a baseline system (a Lenovo 
ThinkStation P340 with a Core i7-10700 processor). Scores are normalized against these 
results, where a score of 1,500 indicates equality between the two. Higher scores are better, 
with double the score indicating double the performance.

Geekbench ML provides one overall score for the Inference Benchmark. The overall score is the 
geometric mean of the scores of the individual Inference workloads.

Accuracy
Geekbench ML uses the predictions computed by the F32 model running on an Intel i7 CPU as 
the ground truth for accuracy calculations. The output from each input is compared against the 
ground truth using each task’s evaluation metric. The metrics used to evaluate the models are 
standard and well established for their corresponding tasks.

Task Evaluation Metric

Image Classification Top-1 Accuracy

Image Segmentation Pixel Accuracy

Object Detection Mean IOU

Face Detection Mean IOU

Pose Estimation Object Keypoint Similarity

Machine Translation Bilingual Evaluation Understudy

Text Classification Top-1 Accuracy

May 2021 Geekbench ML 0.5 5



Computer Vision Workloads
Computer Vision is a field of artificial intelligence that develops techniques for training 
computers to process and understand digital images. With the development of deep neural 
networks, we have obtained higher accuracy and better performance in increasingly challenging 
Computer Vision tasks.

Geekbench ML includes five Computer Vision workloads that span a wide range of inference 
tasks relevant to mobile devices and applications:

• Image Classification identifies the category class to which the object belongs.
• Image Segmentation identifies different objects, along with corresponding boundaries. 
• Object Detection identifies the objects with their spatial positions.
• Face Detection identifies the human faces with their spatial positions.
• Pose Estimation identifies the position of human joints.

May 2021 Geekbench ML 0.5 6



Image Classification

Image Classification is a task where a label is predicted for a digital image. For example, an 
image of a dog would be classified as “dog”. The model takes a fixed-size image as input and 
returns a vector of confidence scores for the trained image labels. The label with the highest 
confidence score is used as the label for the image. 

Image Classification uses MobileNetV1 as its network. MobileNetV1 uses a depth-wise 
separable convolution to build a lightweight network reducing model size and 
complexity.MobileNetV1 is more common than VGG and ResNet in mobile and embedded 
vision applications because of its compact nature.

Network Input Resolution Data Type

MobileNetV1 224 * 224 * 3 float32

MobileNetV1 224 * 224 * 3 float16

MobileNetV1 224 * 224 * 3 int8

May 2021 Geekbench ML 0.5 7



Image Segmentation

Image Segmentation is a task where all of the pixels of a digital image are separated into 
different categories. Unlike Image Classification, which classifies the entire image, Image 
Segmentation classifies each pixel of the image. The model takes a fixed-size image as input 
and returns a vector of confidence scores for each pixel of the image. The label with the highest 
score is used as the label for the pixel. The overall image is returned as a multi-colour mosaic 
where each colour represents an object type.

Image Segmentation uses DeepLabV3+ as its network. DeepLabV3+ includes DeepLabV3's 
Atrous Spatial Pyramid Pooling (ASPP) to capture the contextual information at multiple scales, 
but also adds an effective decoder module to refine the results. We use MobileNetV2 as the 
backbone for feature extraction to reduce the model's overall size and complexity.

Image Segmentation Example Input

Image Segmentation Example Output

Network Backbone Input Resolution Data Type

DeepLabV3+ MobileNetV2 384 * 384 * 3 float32

DeepLabV3+ MobileNetV2 384 * 384 * 3 float16

DeepLabV3+ MobileNetV2 384 * 384 * 3 int8

May 2021 Geekbench ML 0.5 8



Pose Estimation

Pose Estimation is the task of estimating the pose of a person in a digital image by estimating 
the location of key joints in the image. The model takes a fixed-size image as input and 
returns the relative location of individual body parts with confidence scores. The parts include 13 
human body parts, five facial keypoints, and one background location.

Pose Estimation uses OpenPoseV2 as its network. OpenPoseV2 was chosen because it 
increases the network depth and uses three consecutive 3*3 kernels instead of one 7*7 
convolutional kernel. These structural changes reduce the number of operations, which 
improves the accuracy and speed of the model. We use VGG19 as the backbone for feature 
extraction to test hardware performance on more complex models.

Pose Estimation Output Image

Network Backbone Input Resolution Data Type

OpenPoseV2 VGG19 368 * 368 * 3 float32

OpenPoseV2 VGG19 368 * 368 * 3 float16

OpenPoseV2 VGG19 368 * 368 * 3 int8

May 2021 Geekbench ML 0.5 9



Object Detection

Object Detection is the task of identifying which objects are present in a digital image along with 
where these objects appear in the image. Unlike Image Classification which only returns one 
prediction for an image, Object Detection detects the positions and classifications for all of the 
objects in the input image. 

Object Detection uses SSD as its network. SSD, a Single Shot MultiBox Detector, is simpler 
than methods that require object proposals because it completely eliminates the proposal 
generation and subsequent pixel or feature resampling stages. It also encapsulates all 
computation in a single network. It makes SSD easy to train and setup. In order to reduce the 
model’s size and complexity, we use MobileNetV1 as the backbone for feature extraction.

Object Detection Example Output

Network Backbone Input Resolution Data Type

SSD MobileNetV1 300 * 300 * 3 float32

SSD MobileNetV1 300 * 300 * 3 float16

SSD MobileNetV1 300 * 300 * 3 int8

May 2021 Geekbench ML 0.5 10



Face Detection

Face Detection is the task of detecting faces from a digital image. The model takes an image as 
input and returns the confidence score and the coordinates for each detected face. A threshold 
can be set to exclude faces with confidence scores that fall below the threshold. We used a 
robust single-stage face detector as our model. 

Face Detection uses Retinaface as its network. Retinaface takes advantage of extra and self-
supervised multitasking to perform pixel-wise face localization on various scales of faces. In 
order to reduce the model’s size and complexity, we used MobileNetV2 as the backbone for 
feature extractor.

Face Detection Example Output

Network Backbone Input Resolution Data Type

RetinaFace MobileNetV2 640 * 640 * 3 float32

RetinaFace MobileNetV2 640 * 640 * 3 float16

RetinaFace MobileNetV2 640 * 640 * 3 int8

May 2021 Geekbench ML 0.5 11



Natural Language Processing Workloads

Natural Language Processing is a branch of artificial intelligence in linguistics. Its goal is to help 
the interaction between computers and human languages. It does this by allowing computers to 
understand humans’ natural languages. Natural Language Processing is a complex problem. A 
comprehensive understanding of human language requires both low-level (words) and high-
level (abstract) concepts.

With the development of deep neural networks, many Natural Language Processing tasks can 
now achieve high performance on mobile devices.

Geekbench ML includes two Natural Language Processing workloads:

• Text Classification performs sentiment analysis on open-ended text.
• Machine Translation translates text from one language to another.

May 2021 Geekbench ML 0.5 12



Text Classification

Text Classification is the task of assigning open-ended text to a set of pre-defined 
categories.The model takes tokenized text and returns a vector of confidence scores for each 
category.The Text Classification workload takes movie reviews as input and determines whether 
the review is a positive or negative review.

Text Classification uses Compressed BERT (BERT-Tiny) as its network. BERT-Tiny was chosen 
because it retains the high accuracy found in larger versions of the model, but also provides 
simple, small, and effective model. 

Network Input Size (Words) Data Type

BERT-Tiny 128 float32

BERT-Tiny 128 float16

May 2021 Geekbench ML 0.5 13



Machine Translation

Machine Translation is the task of translating text from one language to another. Our Machine 
Translation workload uses neural networks as the critical part of the end-to-end translation 
pipeline. It takes English sentences as input and produces French sentences as output. 

Machine Translation uses Sequence to Sequence Learning with Neural Networks (Seq2Seq) as 
its network. Seq2Seq was chosen because of its performance when converted to TFLite. Gated 
Recurrent Unit (GRU) was implemented to ensure high accuracy. In the future, we plan to use 
Transformer and Attention to maintain accuracy while enabling support for GPU and NNAPI 
delegates.

Network Input Size (Words) Data Type

Seq2Seq GRU 17 float32

Seq2Seq GRU 17 float16

May 2021 Geekbench ML 0.5 14


	Geekbench ML 0.5
	Inference Workloads
	Introduction
	Platform Support
	Machine Learning Framework Support
	Compilers
	Runtime
	Scores
	Accuracy
	Computer Vision Workloads
	Image Classification
	Image Segmentation
	Pose Estimation
	Object Detection
	Face Detection
	Natural Language Processing Workloads
	Text Classification
	Machine Translation


