
 

Geekbench 5
CPU Workloads

Introduction 4
Platform Support 5
Compilers 5
Runtime 6
Scores 7
Cryptography Workloads 8
AES-XTS 8

Integer Workloads 9
Text Compression 9

Image Compression 10

Navigation 11

HTML5 11

SQLite 11

PDF Rendering 12

Text Rendering 12

Clang 12

Camera 13

Floating Point Workloads 14
N-Body Physics 14

Rigid Body Physics 14

Gaussian Blur 15

Face Detection 16

Horizon Detection 17

Image Inpainting 18

HDR 19

Ray Tracing 19

Structure from Motion 19

Speech Recognition 20

Machine Learning 20

Workload Characteristics 21
Instructions Per Cycle 21

Branch Miss Rate 21

Working Set Size 21

Cache Hit and Miss Rates 21

Workload Characteristics Data 22

November 2019 2

Workload Runtimes 23

Single-Core Workload Characteristics 24

Single-Core Workload Cache Characteristics 25

Multi-Core Workload Characteristics 26

Multi-Core Workload Cache Characteristics 27

November 2019 3

Introduction
This document outlines the workloads included in the Geekbench 5 CPU Benchmark suite.

CPU Benchmark scores are used to evaluate and optimize CPU and memory performance
using workloads that include data compression, image processing, machine learning, and
physics simulation. Performance on these workloads is important for a wide variety of
applications including web browsers, image editors, and developer tools.

November 2019 4

Platform Support

Compilers
Geekbench 5.0 is built using the following compilers:

Geekbench 5.1 and later is built using the following compilers:

Platform Minimum Version Comment

Android Android 7.0 “Nougat”

iOS iOS 12

Linux Ubuntu 16.04 LTS CentOS 7, RHEL 7 also supported

macOS macOS 10.13

Windows Windows 10

Platform Compiler Comment

Android Clang 8.0 Provided by NDK r20

iOS Xcode 10.3

Linux Clang 8.0

macOS Xcode 10.3

Windows Clang 8.0

Platform Compiler Comment

Android Clang 9.0 Provided by NDK r21

iOS Xcode 11.2

Linux Clang 9.0

macOS Xcode 11.2

Windows Clang 9.0

November 2019 5

Runtime
Geekbench 5 groups CPU workloads into two sections:

1. Single-Core Workloads
2. Multi-Core Workloads

Each single-core workload has a multi-core counterpart, and vice versa. Each section is
grouped into three subsections:

1. Cryptography Workloads
2. Integer Workloads
3. Floating-Point Workloads

Geekbench inserts a pause (or gap) between each workload to minimize the effect thermal
issues have on workload performance. Without this gap, workloads that appear later in the
benchmark would have lower scores than workloads that appear earlier in the benchmark.

The default gap is 1second for both single-core and multi-core workloads.

November 2019 6

Scores
Geekbench 5 scores are calibrated against a baseline score of 1,000 (which is the score of a
Dell Precision 3430 with a Core i3-8100 processor). Higher scores are better, with double the
score indicating double the performance.

Geekbench 5 provides two composite scores: single-core and multi-core. These scores are
computed using a weighted arithmetic mean of the subsection scores. The subsection scores
are computed using the geometric mean of the scores of the workloads contained in that
subsection.

Subsection Weight

Cryptography 5%

Integer 65%

Floating Point 30%

November 2019 7

Cryptography Workloads

AES-XTS

The Advanced Encryption Standard (AES) defines a symmetric block encryption
algorithm. AES encryption is widely used to secure communication channels (e.g.,
HTTPS) and to secure information (e.g., storage encryption, device encryption).

The AES-XTS workload in Geekbench 5 encrypts a 128MB buffer using AES running in
XTS mode with a 256-bit key. The buffer is divided into 4K blocks. For each block, the
workload derives an XTS counter using the SHA-1 hash of the block number. The block is
then processed in 16-byte chunks using AES-XTS, which involves one AES encryption,
two XOR operations, and a GF(2128) multiplication.

Geekbench will use AES (including VAES) and SHA-1 instructions when available, and fall
back to software implementations otherwise.

Superior AES performance can translate into improved usability for mobile devices. See,
e.g., the Ars Technica review of the Moto E.

November 2019 8

http://arstechnica.com/gadgets/2015/03/review-the-new-moto-e-is-the-most-phone-you-can-get-for-150/3/

Integer Workloads

Text Compression

The Text Compression workload uses LZMA to compress and decompress an HTML
ebook. LZMA (Lempel-Ziv-Markov chain algorithm) is a lossless compression algorithm.
The algorithm uses a dictionary compression scheme (the dictionary size is variable and
can be as large as 4GB). LZMA features a high compression ratio (higher than bzip2).

The Text Compression workload compresses and decompresses a 2399KB HTML ebook
using the LZMA compression algorithm with a dictionary size of 2048KB. The workload
uses the LZMA SDK for the implementation of the core LZMA algorithm.

November 2019 9

Image Compression

The Image Compression workload compresses and decompresses a photograph using
the JPEG lossy image compression algorithm, and compresses and decompresses a CSS
sprite using the PNG lossless image compression algorithm.

The photograph is a 24 megapixel image, and the JPEG quality parameter is set to “90”, a
commonly-used setting for users who desire high-quality image. JPEG compression is
implemented by the libjpeg-turbo library.

The CSS sprite is a 3 megapixel image. PNG compression is implemented by the libpng
and zlib-ng libraries.

The Image Compression workload compresses and decompresses a photograph using
JPEG, and a CSS sprite using PNG. The workload sets the JPEG quality parameter to
“90”, a commonly-used setting for users who desire high-quality images.

The workload uses libjpeg-turbo for the implementation of the core JPEG algorithm, and
libpng for the implementation of the core PNG algorithm.

JPEG Image

PNG Image (detail)

November 2019 10

Navigation

The Navigation workload computes driving directions between a sequence of destinations
using Dijkstra's algorithm. Similar techniques are used to compute paths in games, to
route computer network traffic, and to route driving directions. The dataset contains
216,548 nodes and 450,277 edges with weights approximating travel time along the road
represented by the edge. The route includes 13 destinations. The dataset is based on
Open Street Map data for Ontario, Canada.

HTML5

The HTML5 workload models DOM creation from both server-side rendered (SSR) and
client-side rendered (CSR) HTML5 documents. For the SSR document, the HTML5
workload uses the Gumbo HTML5 parser to create the DOM by parsing an HTML file. For
the CSR document, the HTML5 workload uses the Gumbo HTML5 parser to create the
DOM by parsing an HTML file, then uses the Duktape JavaScript engine to extend the
DOM.

SQLite

SQLite is a self-contained SQL database engine, and is the most widely deployed
database engine in the world.

The SQLite workload executes SQL queries against an in-memory database. The
database is synthetically created to mimic financial data, and is generated using
techniques outlined in “Quickly Generating Billion-Record Synthetic Databases” by J. Gray
et al. The workload is designed to stress the underlying engine using a variety of SQL

Navigation Route

November 2019 11

features (such as primary and foreign keys) and query keywords such as: SELECT,
COUNT, SUM, WHERE, GROUP BY, JOIN, INSERT, DISTINCT, and ORDER BY. This
workload measures the transaction rate a device can sustain with an in-memory SQL
database.

PDF Rendering

The Portable Document Format (PDF) is a standard file format used to present and
exchange documents independent of software or hardware. PDF files are used in
numerous ways, from government documents and forms to e-books.

The PDF workload parses and renders a PDF map of Crater Lake National Park at
200dpi. The PDF workload uses the PDFium library (which is used by Google Chrome to
display PDFs).

Text Rendering

The Text Rendering workload parses a Markdown-formatted document and renders it as
rich text to a bitmap. The Text Rendering workload uses the following libraries as part of
the workload:

• GitHub Flavored Markdown, used to parse the Markdown document.
• FreeType, used to render fonts.
• ICU (International Components for Unicode), used for boundary analysis.

The Text Rendering workload input file is 1721 words long, and produces a bitmap that is
1275  pixels by 9878 pixels in size.

Clang

Clang is a compiler front end for the programming languages C, C++, Objective-C,
Objective-C++, OpenMP, OpenCL, and CUDA. It uses LLVM as its back end.

The Clang workload compiles a 1,094 line C source file (of which 729 lines are code). The
workload uses AArch64 as the target architecture for code generation.

November 2019 12

Camera

The Camera workload simulates some of the actions a camera application or photo-
sharing social network application might perform. The Camera workload simulates
applying a filter to an image and preparing it for upload:

• Crop an image to a square aspect ratio.
• Load a filter definition from a JSON file and execute the individual filter operations:

• Adjust image contrast.
• Blur the image.
• Composite a vignette effect onto the image.
• Composite a border onto the image.

• Compress the output image into a JPEG file.
• Compute the SHA-2 hash of the JPEG file.

The Camera workload also simulates preparing photos for display in a UI picker by
generating thumbnails for image:

• Query a SQLite database to determine which images are missing thumbnails.
• Generate a thumbnail with a longest edge of 224 pixels.

Camera Input Image

Camera Output Image

November 2019 13

Floating Point Workloads

N-Body Physics

The N-Body Physics workload computes a 3D gravitation simulation using the Barnes-Hut
method. To compute the exact gravitational force acting on a particular body x in a field of
N bodies requires N − 1 force computations. The Barnes-Hut method reduces the number
of force computations by approximating as a single body any tight cluster of bodies that is
far away from x. It does this efficiently by dividing the space into octants — eight cubes of
equal size — and recursively subdividing each octant into octants, forming a tree, until
each leaf octant contains exactly one body. This recursive subdivision of the space
requires floating point operations and non-contiguous memory accesses.

The N-Body Physics workload operates on 16,384 bodies arranged in a “flat” galaxy with a
massive black hole at its centre.

Rigid Body Physics

The Rigid Body Physics workload computes a 2D physics simulation for rigid bodies that
includes collisions and friction. The workload uses the Lua programming language to
initialize and manage the physics simulation, and uses the Box2D physics library to
perform the actual physics calculations.

November 2019 14

Gaussian Blur

The Gaussian Blur workload blurs an image using a Gaussian spatial filter. Gaussian
blurs are widely used in software, both in operating systems to provide interface effects,
and in image editing software to reduce detail and noise in an image. Gaussian blurs are
also used in computer vision applications to enhance image structures at different scales.

The Gaussian Blur workload blurs an 24 megapixel image using a Gaussian spatial filter.
While the Gaussian blur implementation supports an arbitrary sigma, the workload uses a
fixed sigma of 3.0f. This sigma translates into a filter diameter of 25 pixels by 25 pixels.

Gaussian Blur Input Image (Detail)

Gaussian Blur Output Image (Detail)

November 2019 15

Face Detection

Face detection is a computer vision technique that identifies human faces in digital
images. One application of face detection is in photography, where camera applications
use face detection for autofocus.

The Face Detection workload uses the algorithm presented in “Rapid Object Detection
using a Boosted Cascade of Simple Features” (2001) by Viola and Jones. The algorithm
can produce multiple boxes for each face. These boxes are reduced to a single box using
non-maximum suppression.

Face Detection Input Image

Face Detection Output

November 2019 16

Horizon Detection

The Horizon Detection workload searches for the horizon line in an image. If the horizon
line is found, the workload rotates the image to make the horizon line level.

The workload first applies a Canny edge detector to the image to reduce details, then
detects lines in the image using the Hough transform, and then picks the line with the
maximum score as the horizon. The workload rotates the image so the horizon line is
level in the image.

The input image is a 9 megapixel photograph.

Horizon Detection Input Image

Horizon Detection Output Image

November 2019 17

Image Inpainting

The Image Inpainting workload takes an input image with an undesirable region (indicated
via a mask image) and uses an inpainting scheme to reconstruct the region using data
from outside the undesirable region.

The Image Inpainting workload operates on 1 megapixel images.

Inpaint Input Image (Detail)

Inpaint Mask Image (Detail)

Inpaint Output Image (Detail)

November 2019 18

HDR

The HDR workload takes four standard dynamic range (SDR) images and produces a
high dynamic range (HDR) image. Each input image is 3 megapixels in size. The HDR
workload uses the algorithm described in the paper, "Dynamic Range Reduction inspired
by Photoreceptor Physiology" by Reinhard and Devlin, and produces superior images as
compared to the tone mapping algorithm in Geekbench 4.

Ray Tracing

Ray tracing is a rendering technique. Ray tracing generates an image by tracing the path
of light through an image plane and simulating the effects of its encounters with virtual
objects. This method is capable of producing high-quality images, but these images come
at a high computational cost.

The Ray Tracing workload uses a k-d tree, a space-partitioning data structure, to
accelerate the ray intersection calculations.

The Ray Tracing workload operates on a scene with 3,608 textured triangles. The
rendered image is 768 pixels by 768 pixels.

Structure from Motion

Ray Tracing Output Image

November 2019 19

Augmented reality (AR) systems add computer-generated graphics to real-world scenes.
The systems must have an understanding of the geometry of the real-world scene in order
to properly integrate the computer-generated graphics. One approach to calculating the
geometry is through Structure from Motion (SfM) algorithms.

The Structure from Motion workload takes two 2D images of the same scene and
constructs an estimate of the 3D coordinates of the points visible in both images.

Speech Recognition

The Speech Recognition workload performs recognition of arbitrary English speech using
PocketSphinx, a widely used library that uses HMM (Hidden Markov Models).

Using speech to interact with smartphones is becoming more popular with the introduction
of Siri, Google Assistant, and Cortana, and this workload tests how quickly a device can
process sound and recognize the words that are being spoken.

Machine Learning

The Machine Learning workload is an inference workload that executes a Convolutional
Neural Network to perform an image classification task. The workload uses MobileNet v1
with an alpha of 1.0 and an input image size of 224 pixels by 224 pixels. The model was
trained on the ImageNet dataset. 

November 2019 20

Workload Characteristics
Geekbench 5 CPU workloads exercise a wide range of device subsystems, and can be partly
characterized by the following characteristics.

Instructions Per Cycle

Instructions per Cycle, or IPC, is a measure of the effective instruction throughput of a
processor, which correlates with higher performance. It is measured as the number of
instructions executed for a workload divided by the number of cycles used for that workload.

Branch Miss Rate

Branch miss rate, or branch misprediction rate, is a measure of how frequently a system
incorrectly predicts a code branch, which correlates with lower performance. It is measured as a
percentage of total branches. Whenever a code path branches into multiple cases, a system
executing that code attempt to predict which case will be true in order to pre-fetch data or pre-
execute instructions. When operating on well-ordered data, systems can correctly predict (or
“hit”) branches more frequently, improving performance.

Working Set Size

Working Set size is a measure of the amount of memory that a program uses, either by reading
from it or writing to it. It is expressed in bytes, but operates by measuring memory used at the
granularity of pages. Programs with a large working-set size run on systems with small caches
can encounter more cache misses, where the program cannot find the data it needs in a cache
and must query a larger cache or main memory. Cache misses negatively impact performance.

Cache Hit and Miss Rates

Cache hit and miss rates are a measure of how frequently a program finds data in a system’s
cache when attempting to read from or write to memory. Cache misses correlate with lower
performance. A hit or miss rate for a cache is measured as a percentage of total accesses to
that cache. When a program attempts to access data, it first checks if that data has been copied
to a lower level of cache (e.g. the L1d cache). If it has been, it can operate on it there quickly. If
it is not cached there, the program must check higher levels of cache or main memory, which
negatively impacts performance.

As an example of cache measurements, if a workload cannot find data in the L1d cache or the
L2 cache, but finds it in the L3 cache, it is recorded as an L1d miss, an L2 miss, and an L3 hit. If

November 2019 21

data is accessed regularly, or if the system predicts that data will be accessed soon, it is more
likely to be cached.

Most systems have an L1 Instruction , L1 Data, L2, and L3 cache. The L1 Data, L2, and L3
caches are all used to improve the speed of fetching data, and are increasingly large and slow
to access. If a program misses the L3 cache, and there is no L4 cache, it accesses main
memory which is particularly large and slow to access. The L1 Instruction cache is an instruction
cache, used to improve the speed of fetching instructions.

Workload Characteristics Data

The following tables report the following characteristics for the single-core and multi-core CPU
workloads:

• Runtimes
• Instructions Per Clock
• Branch Miss Rate
• Working Set Size
• L1 Instruction Cache Miss Rate
• L1 Data Cache Miss Rate
• L2 Cache Miss Rate
• L3 Cache Miss Rate

The data was collected on an Intel Core i5-6400 running Ubuntu 18.04.

November 2019 22

Workload Runtimes

Single-Core Runtime Multi-Core Runtime

AES-XTS 60 22

Text Compression 977 1211

Image Compression 289 309

Navigation 424 728

HTML5 93 100

SQLite 76 89

PDF Rendering 278 314

Text Rendering 41 51

Clang 272 297

Camera 104 117

N-Body Physics 717 207

Rigid Body Physics 275 289

Gaussian Blur 507 134

Face Detection 150 158

Horizon Detection 421 471

Image Inpainting 156 213

HDR 506 565

Ray Tracing 105 170

Structure from Motion 1122 1236

Speech Recognition 388 728

Machine Learning 32 66

November 2019 23

Single-Core Workload Characteristics

IPC Branch Miss Working Set (Bytes)

AES-XTS 1.9 0.1 268,882,739

Text Compression 1.2 10.5 23,225,958

Image Compression 2.7 2.1 48,694,067

Navigation 0.9 5.0 42,862,182

HTML5 2.6 0.5 30,010,572

SQLite 2.4 0.8 4,440,064

PDF Rendering 2.9 1.3 96,491,110

Text Rendering 2.5 0.9 52,686,848

Clang 1.5 2.7 23,905,075

Camera 3.2 0.3 96,450,150

N-Body Physics 0.9 5.7 11,009,228

Rigid Body Physics 1.9 1.8 3,202,252

Gaussian Blur 2.7 0.1 191,755,059

Face Detection 2.7 0.2 2,016,051

Horizon Detection 2.2 2.6 140,408,422

Image Inpainting 1.4 0.4 52,924,416

HDR 3.2 0.1 109,992,345

Ray Tracing 2.0 2.0 28,647,424

Structure from Motion 2.9 0.9 122,825,113

Speech Recognition 1.1 4.9 55,885,824

Machine Learning 2.8 0.2 95,648,153

November 2019 24

Single-Core Workload Cache Characteristics

L1I Miss L1D Miss L2 Miss L3 Miss

AES-XTS 0.0 0.4 3.6 9.6

Text Compression 0.0 3.9 55.4 8.5

Image Compression 0.0 1.5 3.5 3.8

Navigation 0.0 7.8 43.0 28.5

HTML5 0.3 0.7 39.3 26.2

SQLite 3.3 2.1 8.9 0.0

PDF Rendering 0.5 0.8 11.4 41.8

Text Rendering 0.5 0.5 25.1 45.5

Clang 6.1 3.1 38.9 1.8

Camera 0.0 6.3 5.1 5.4

N-Body Physics 0.0 24.0 55.3 2.0

Rigid Body Physics 0.4 7.3 2.0 0.0

Gaussian Blur 0.0 15.7 12.4 0.0

Face Detection 0.0 1.5 12.8 0.0

Horizon Detection 0.0 3.2 10.6 81.0

Image Inpainting 0.0 9.0 57.5 8.3

HDR 0.0 0.2 5.0 23.6

Ray Tracing 0.0 24.6 6.6 2.0

Structure from Motion 0.0 3.3 7.9 37.1

Speech Recognition 0.0 10.8 69.3 14.0

Machine Learning 0.0 6.6 25.6 14.5

November 2019 25

Multi-Core Workload Characteristics

IPC Branch Miss Working Set (Bytes)

AES-XTS 1.9 0.1 268,939,264

Text Compression 1.0 10.5 101,616,844

Image Compression 2.7 2.1 185,000,755

Navigation 0.6 5.0 170,098,688

HTML5 2.6 0.5 113,223,270

SQLite 2.4 0.8 16,428,236

PDF Rendering 2.7 1.3 379,792,588

Text Rendering 2.3 0.9 207,525,478

Clang 1.5 2.7 42,861,363

Camera 3.1 0.3 376,146,329

N-Body Physics 0.9 5.7 11,141,939

Rigid Body Physics 1.8 1.8 9,274,163

Gaussian Blur 3.2 0.1 191,800,115

Face Detection 2.7 0.2 5,337,088

Horizon Detection 2.1 2.6 487,233,126

Image Inpainting 1.2 0.4 196,447,436

HDR 3.1 0.1 456,980,889

Ray Tracing 2.3 0.6 50,994,380

Structure from Motion 2.9 0.9 468,773,273

Speech Recognition 0.7 4.9 219,734,835

Machine Learning 1.8 0.2 381,136,896

November 2019 26

Multi-Core Workload Cache Characteristics

L1I Miss L1D Miss L2 Miss L3 Miss

AES-XTS 0.0 0.4 6.8 13.3

Text Compression 0.0 4.0 55.6 23.2

Image Compression 0.0 1.5 3.4 5.8

Navigation 0.0 8.2 45.5 39.2

HTML5 0.3 0.6 35.0 27.4

SQLite 3.3 2.2 9.3 3.2

PDF Rendering 0.5 0.8 11.8 52.9

Text Rendering 0.5 0.5 24.5 57.5

Clang 6.1 3.1 39.2 8.3

Camera 0.0 6.5 5.1 6.4

N-Body Physics 0.0 24.0 56.1 2.7

Rigid Body Physics 0.4 7.3 3.3 0.0

Gaussian Blur 0.0 6.1 1.4 80.0

Face Detection 0.0 1.5 15.9 0.0

Horizon Detection 0.0 3.2 11.6 67.6

Image Inpainting 0.0 9.2 57.7 32.7

HDR 0.0 0.3 6.7 26.3

Ray Tracing 0.0 25.3 5.4 1.1

Structure from Motion 0.0 3.2 8.9 41.9

Speech Recognition 0.0 10.8 70.8 59.2

Machine Learning 0.0 6.7 33.1 47.9

November 2019 27

	Geekbench 5
	CPU Workloads
	Introduction
	Platform Support
	Compilers
	Runtime
	Scores
	Cryptography Workloads
	AES-XTS
	Integer Workloads
	Text Compression
	Image Compression
	Navigation
	HTML5
	SQLite
	PDF Rendering
	Text Rendering
	Clang
	Camera
	Floating Point Workloads
	N-Body Physics
	Rigid Body Physics
	Gaussian Blur
	Face Detection
	Horizon Detection
	Image Inpainting
	HDR
	Ray Tracing
	Structure from Motion
	Speech Recognition
	Machine Learning
	Workload Characteristics
	Instructions Per Cycle
	Branch Miss Rate
	Working Set Size
	Cache Hit and Miss Rates
	Workload Characteristics Data
	Workload Runtimes
	Single-Core Workload Characteristics
	Single-Core Workload Cache Characteristics
	Multi-Core Workload Characteristics
	Multi-Core Workload Cache Characteristics

