
Geekbench 3 Workloads

Primate Labs

August 8, 2013

The goal of Geekbench is to provide an objective measure of computer hardware perfor-
mance across different software platforms. It does this by executing 29 tests, or “workloads,”
each of which focuses on a particular aspect of a computer’s performance. The workloads are
divided into three categories: integer, floating point, and memory. The integer and floating
point workloads test CPU performance: how fast a computer can perform calculations. The
memory workloads test memory access performance: how fast a computer can retrieve a
piece of data from memory.

1 Integer Workloads

The integer workloads measure how fast a computer can execute operations on integers. To
focus on CPU performance, there is no file input or output in the timed sections of the
integer workloads. Additionally, each workload is analyzed to reduce memory accesses and
eliminate memory access bottlenecks. The integer workloads in Geekbench 3 are explained
in this section.

1.1 AES

The advanced encryption standard (AES) defines a symmetric key block encryption algo-
rithm. AES encryption is used in security tools such as SSL, IPsec, and GPG. The algo-
rithm encrypts a message by executing a sequence of reorderings and substitutions in 16-byte
blocks. These operations make heavy use of lookup table references and bit-level operations
such as shifting, bitwise and, and bitwise xor. The AES workload in Geekbench uses a hard-
coded 128-bit key aligned in memory to 16 bytes. The clear text input to AES on desktop
computers is a 32 MB string and on mobile platforms is an 8 MB string. Some machines
provide the AES-NI instructions for fast AES execution. The AES workload in Geekbench
uses these instructions when they are available.

1.2 Twofish

Twofish is a symmetric key block encryption algorithm. It is a member of the family of
encryption algorithms know as Feistel Cipher and is included in the OpenPGP standard.
The twofish implementation in Geekbench uses a hardcoded 128-bit encryption key. The
input is a generated text of 32 MB on desktop computers and 8 MB on mobile platforms.

1

http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
http://en.wikipedia.org/wiki/Feistel_cipher
http://www.openpgp.org/

1.3 SHA1 and SHA2

SHA1 and SHA2 are cryptographic hash algorithms. Given an input of arbitrary length, a
cryptographic hash algorithm computes a fixed length “digest” of the message. The algo-
rithm is designed such that the digest is easy to compute and it is impractical to find an
input that generates a prescribed digest. Furthermore, small changes in the input should
produce significant changes in the digest. Cryptographic hash algorithms are used to store
passwords and verify the authenticity of data.

SHA1 was the NIST standard cryptographic hash algorithm until approximately 2010
when it was replaced by SHA2 due to weakness against collision attacks. SHA2 processes
a message using a block structure similar to that of SHA1, but with more sophisticated
computation at each round. Collision attacks against SHA1 remain impractical, however,
and it still in widespread use [1]. The SHA1 workload in Geekbench computes a 160-bit
digest on a generated text message. The message length is 64 MB on desktop machines and
16 MB on mobile devices. The SHA2 workload computes a 256-bit digest for a generated
message. The message length is 32 MB for desktop machines and 8 MB for mobile devices.

1.4 BZip2 Compression and Decompression

BZip2 is a file compression algorithm. It uses Huffman coding and the Burrows-Wheeler
transform. The BZip workloads in Geekbench compress or decompress an HTML-formatted
ebook from Project Gutenberg using bzlib version 1.0.6. On a desktop machine, the input is
“Ulysses” by James Joyce. The HTML file is 1823 KB uncompressed and 513 KB compressed.
On a mobile device, “Dubliners” by James Joyce is used. It is 458 KB uncompressed and
116 KB compressed.

1.5 JPEG Compression and Decompression

The JPEG lossy image compression algorithm encodes an image in 8 × 8 blocks. Each
block is transformed using a discrete cosine transform (DCT) and each DCT coefficient is
quantized to achieve compression. The coarseness of the quantization is determined by the
desired quality of the compressed image. The input image for the JPEG compression and
decompression workloads is the 24-bit 3-channel image shown in Figure 1. A 6.4 megapixel
image is used for desktop workloads and a 1.6 megapixel image is used for mobile workloads.
For the compression workload, the quality parameter is set to 90/100.

1.6 PNG Compression and Decompression

The PNG lossless image compression algorithm encodes an image in two stages. It transforms
the image using a prediction/correction scheme then compresses the resulting sequence using
the Deflate algorithm. Deflate uses Huffman coding and the LZ77 algorithm. The Geekbench
workload compresses images using libpng 1.6.2. The input image for the PNG compression
and decompression workloads is the 24-bit 3-channel image presented in Figure 1. For the
compression workload, the image is scaled to 0.4 megapixel on desktop platforms and to 0.1

2

http://www.nist.gov/
http://www.bzip.org/
http://www.gutenberg.org/
http://www.jpeg.org/
http://www.libpng.org/pub/png/
http://libpng.org/pub/png/libpng.html

Figure 1: Input image for image workloads

3

megapixel on mobile. For the decompression workload, the image is scaled to 2.5 megapixel
on desktop plagforms and 0.6 megapixel on mobile devices.

1.7 Sobel

The Sobel operator computes an approximation of the norm of a smoothed gradient of an
image taken as a 2D function. The value of the operator is large on sharp edges of the input
image, so it useful in edge detection. The Sobel operator is one component of the Canny
edge detector. The Sobel implementation in Geekbench convolves the input image with the
kernel:

1 0 -1
2 0 -2
1 0 -1

to obtain the x component of the smoothed gradient. It uses the kernel:

1 2 1
0 0 0
-1 -2 -1

to obtain the y component. The implementation computes an approximation of the
magnitude of the smoothed gradient as the sum of the absolute values of the components:
|[x, y]>| ≈ |x|+ |y|. The Sobel workload uses integer multiplication and addition operations
heavily. The test image for the Sobel workload is 10 mexapixel on desktop machines and 4.9
megapixel on mobile devices. The input image is a 24-bit 3-channel image and is converted
to grayscale as part of the workload. The input image for this workload is shown in Figure 1.
The output from the Sobel operator is presented in Figure 2.

1.8 Lua

The Lua workload tests execution of a compiled scripting language on a virtual machine.
The script is based on the page generation code in the Geekbench browser. It is written
in Lua and uses dkjson to parse a JSON string containing Geekbench results. The script
iterates over the results and generates two tables: one for results from 32-bit machines and
one for results from 64-bit machines. It sorts both tables by score and returns the CPU
information for the row with the maximum score in the 32-bit table. The JSON input is 333
KB on desktop platforms and 169 KB on mobile platforms. The same Lua script is used on
both desktop and mobile devices.

1.9 Dijkstra

Dijkstra’s algorithm computes single-source shortest paths in weighted graphs. Some appli-
cations include routing of computer network traffic and route calculation in maping systems
such as OpenStreetMap or Google Maps. Input for the Dijkstra workload in Geekbench is
a graph representing the streets and roads in the Waterloo region in Ontario, Canada. The

4

http://www.lua.org/
http://browser.primatelabs.com/processor-benchmarks
http://dkolf.de/src/dkjson-lua.fsl/home

Figure 2: Output from the Sobel workload

5

Figure 3: The routes computed by the Dijkstra workload

data was extracted from OpenStreetMap. The graph contains 79392 nodes and 162644 edges
with integer weights approximating travel time along the section of road represented by the
edge. The route includes a source and 9 ordered destinations as shown by the markers in
Figure 3.

On desktop machines, the shortest path between each pair of destinations on the route
is computed. On mobile devices, only the first three sections of the route are computed.

The computation in the Geekbench implementation of Dijkstra’s algorithm is dominated
by operations in a Fibonacci queue. This tests a machine’s performance on data structures
and pointer dereferences.

2 Floating Point Workloads

The floating point workloads measure computer performance on floating point operations. To
focus on CPU performance, there are no file input or output operations in the timed sections
of the workloads. The workloads are analyzed to remove memory bottlenecks and ensure
that execution times are bound by CPU performance and not memory access performance.

6

http://www.openstreetmap.org/

2.1 Black-Scholes

The Black-Scholes stochastic partial differential equation models option pricing on financial
markets. For some special cases, such as European call and put options, the equation can
be solved exactly. The solution for European call and put options is called the Black-
Scholes formula. The Black-Scholes workload in Geekbench calculates option prices using
the Black-Scholes formula. It uses floating point computation intensively and has a low
memory bandwidth requirement, so it is an effective measure of floating point performance.
The formula uses expensive functions from the standard math library: logf, sqrtf, and
expf. The workload uses a spot price of $42, a strike price of $40, and a risk free rate of
0.1. The price is computed over 3 million time steps on desktop machines and 500,000 time
steps on mobile devices.

2.2 Mandelbrot

The Mandelbrot set is the set of points z0 in the complex plane such that |zn| is bounded in
the recurrence

zn+1 = z2n + z0, n = 0, 1, ...

as n → ∞. Computing a numerical approximation of the Mandelbrot set involves floating
point addition and multiplication in a loop to verify the boundedness of the recurrence for
each point in the domain of interest. The Mandelbrot workload in Geekbench computes the
approximation over the region of the complex plane: {r + ci;−1.5 ≤ r ≤ 1.5 and − 1 ≤
c ≤ 1}. The region is discretized by a uniform grid of 800 × 800 for desktop machines and
400× 400 for mobile platforms. The workload computes 255 iterations of the recurrence for
each point z in the grid. If |zn| ≥ 2 at any point during computation of the recurrence then
the recurrence is assumed to be unbounded and the loop for that point is terminated. The
Mandelbrot set computed by Geekbench is illustrated in Figure 4.

2.3 Sharpen Image

The sharpen image workload implements an unsharp mask filter using the negative of the
Laplacian operator. The operation is implemented in Geekbench by convolving in the spatial
domain each channel of the image with the 3× 3 kernel:

0 -1 0
-1 5 -1
0 -1 0

All addition and multiplication operations in the convolution are floating point. Ad-
ditionally, the workload performs pointer dereferences to compute input and output pixel
addresses. The input image for the sharpen workload is the 24-bit 3-channel shown in Fig-
ure 1. The image is scaled to 6.4 megapixel on desktop platforms and 1.6 megapixel on
mobile devices. The output from the sharpen workload is shown in Figure 5

7

Figure 4: The set computed by the Mandelbrot workload

8

Figure 5: Output from the Sharpen workload

9

2.4 Blur Image

The blur image workload blurs each channel of an input image by convolving it with a 5× 5
Gaussian kernel in the spatial domain:

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

All addition and multiplication operations in the convolution are floating point. This
workload tests performance on floating point operations interleaved with memory reads and
writes. The sharpen image workload also computes a spatial convolution, but blur performs
more floating point operations and memory accesses per pixel due to its larger kernel size.
The input image for the blur image workload is 2.5 megapixel on desktop platforms and 0.6
megapixel on mobile platforms. Both are 24-bit RGB resized versions of the image shown
in Figure 1. The blurred image computed by the workload is presented in Figure 6

2.5 SGEMM and DGEMM

The general matrix multiplication (GEMM) workloads accept three N ×N matrices A, B,
and C and compute the result:

C = AB + C.

The GEMM algorithm divides the matrices into blocks and operates on one block at a time.
This improves cache coherency and leads to faster execution compared to an implementation
of the “pencil and paper” matrix multiplication algorithm. In Geekbench, SGEMM performs
the operation using single precision floating point and DGEMM performs it using double
precision floating point. The block sizes are empirically determined values that give good
cache performance across tested platforms. SGEMM uses a block size of 128× 128 elements
and DGEMM uses 64× 64 elements. The input values are Aij = Bji = (i + jN)(mod 10)
and Cij = 0. For both SGEMM and DGEMM, N = 896 on desktop machines and N = 512
for mobile devices.

2.6 SFFT and DFFT

The Fourier transform decomposes an input signal into a linear combination of a basis of
trigonometric polynomials. In other words it transforms an array into a sum of sines and
cosines of various frequencies. The fast Fourier transform (FFT) algorithm executes this
operation efficiently. The Geekbench implementation is a recursive Cooley-Tuckey radix-2
decimate in time FFT. It performs the bit-reversed index reordering step before the recur-
sion and contains special case processing for array lengths of 2, 4, 8, and 16. The special
cases contain fewer branching and array dereference operations than the general case re-
cursive function. Finally, the workload precomputes the complex exponentials (the “twiddle
factors”) and does not count the computation of these values in the workload execution time.

10

Figure 6: Output from the Blur workload

11

The workload simulates a frequency analysis in an audio processing application. A 1D
input array is partitioned into chunks of 4096 elements and an FFT is computed for each
chunk. The SFFT workload performs this computation using single precision and the DFFT
workload performs it using double precision. On desktop platforms, the input array contains
approximately 8 million data points (8·1024·1024) giving a 33.5 MB input array for SFFT and
a 67 MB input array for DFFT. On mobile devices, the input array contains approximately
2 million data points (2 · 1024 · 1024) giving an 8.3 MB input array for SFFT and a 16.7 MB
input for DFFT.

2.7 N-Body

The N-body workload computes a 3D gravitation simulation using the Barnes-Hut method.
To compute the exact gravitational force acting on a particular body x in a field of N bodies
requires N − 1 force computations. The Barnes-Hut method reduces the number of force
computations by approximating as a single body any tight cluster of bodies that is far away
from x. It does this efficiently by dividing the space into octants—eight cubes of equal
size—and recursively subdividing each octant into octants, forming a tree, until each leaf
octant contains exactly one body. This recursive subdivision of the space requires floating
point operations and non-contiguous memory accesses.

With the space divided, the force exerted on a body x by all bodies in an octant can
be approximated by the force exerted on x by the centre of mass of the octant. This
approximation is used when the side length l of the octant is small relative to the distance
d from x to the center of mass of the octant: if l/d < T for a fixed threshold T . The
Geekbench N-body workload uses T = 0.5. Once the force has been computed for all bodies
in the simulation, the position of each body is updated. This step involves iterating over the
bodies in storage order and solving a system of first-order ordinary differential equations for
each. This is done using the forward Euler method with a time step of 500. The workload
simulates gravitation for 1000 bodies of 1000 Kg each. The bodies are initially placed at the
gridpoints of a uniform grid in the computation domain. The workload simulates 40 time
steps on desktop machines and 5 time steps on mobile devices.

2.8 Raytrace

In a ray tracing rendering system, a 3D scene is described by a mathematical model. The
scene is then rendered by choosing a camera position in scene and placing the image plane
between the camera and the objects to be rendered. A ray is passed from the camera lens
through each pixel in the image plane and into the scene. When a ray intersects an object,
the material properties of the object at the point of intersection and the light source in
the scene determine the color of the corresponding pixel in the image plane. The ray trace
workload renders a 3D scene using a software ray tracer on the CPU. It simulates shading,
reflection, and diffusion effects. On Desktop machines, the rendered image is 0.36 megapixels
and on mobile platforms it is 0.18 megapixels. The rendered scene is presented in Figure 7.

12

Figure 7: Output from the Raytrace workload

13

3 Memory Workloads

The memory workloads in Geekbench gauge performance of the memory subsystem under
sustained load by sequentially accessing and manipulating large regions of memory. These
workloads are based on the STREAM benchmarks by John D. McCalpin.

3.1 Stream Copy

This workload executes a value-by-value copy of an array of singe precision floating point
values from one memory region to a disjoint region:

b[i] = a[i] for i = 1, 2, ..., n.

The array length is approximately forty million elements (40·1024·1024) on desktop platforms
and approximately five million (5× 1024× 1024) on mobile devices giving a copy of 168 MB
on desktops and 21 MB on mobile.

3.2 Stream Scale

The stream scale workload multiplies by a constant each value in an array of single precision
floating point number and writes the result to an array of the same type in a disjoint region
of memory. The values are chosen such that no overflow occurs:

b[i] = k*a[i] for i = 1, 2, ..., n.

The array length is approximately forty million elements (40·1024·1024) on desktop platforms
and approximately five million (5 · 1024 · 1024) on mobile devices giving a copy of 168 MB
on desktops and 21 MB on mobile.

3.3 Stream Add

The stream add workload reads 32-bit single precision floats from two non-overlapping arrays,
adds them, and writes the result to a third array of the same type. The values are chosen
such that no overflow occurs:

c[i] = a[i] + b[i] for i = 1, 2, ..., n.

The array length is approximately forty million elements (40·1024·1024) on desktop platforms
and approximately five million (5 · 1024 · 1024) on mobile devices giving intputs of 168 MB
on desktops and 21 MB on mobile.

3.4 Stream Triad

The stream triad workload combines stream addition with scalar multiplication. It sequen-
tially reads single precision floating point values from two non overlapping arrays, multiplies
one of the values by a constant and adds the result to the other value. The result of this
addition is written to the corresponding location in a third array of the same type:

14

http://www.cs.virginia.edu/stream/

c[i] = k*a[i] + b[i] for i = 1, 2, ..., n.

The array length is approximately forty million elements (40·1024·1024) on desktop platforms
and approximately five million (5 · 1024 · 1024) on mobile devices giving inputs of 168 MB
on desktops and 21 MB on mobile.

References

[1] Bruce Schneier. When will we see collisions for sha-1? http://www.schneier.com/

blog/archives/2012/10/when_will_we_se.html (retrieved August 8, 2013), 2012.

15

http://www.schneier.com/blog/archives/2012/10/when_will_we_se.html
http://www.schneier.com/blog/archives/2012/10/when_will_we_se.html

	Integer Workloads
	AES
	Twofish
	SHA1 and SHA2
	BZip2 Compression and Decompression
	JPEG Compression and Decompression
	PNG Compression and Decompression
	Sobel
	Lua
	Dijkstra

	Floating Point Workloads
	Black-Scholes
	Mandelbrot
	Sharpen Image
	Blur Image
	SGEMM and DGEMM
	SFFT and DFFT
	N-Body
	Raytrace

	Memory Workloads
	Stream Copy
	Stream Scale
	Stream Add
	Stream Triad

